Titanium in Muscovite, Biotite, and Hornblende: Modeling, Thermometry, and Rutile Activities of Metapelites and Amphibolites

Jennifer A. Chambers, Matthew J. Kohn

Research output: Contribution to journalArticlepeer-review

Abstract

<p> Reactions involving the <sup> VI </sup> Ti <sup> IV </sup> Al- <sup> VI </sup> Al <sup> IV </sup> Si exchange in muscovite, biotite, and hornblende were calibrated thermodynamically using a set of experimental and natural data in rutile-plus quartz/coesite-bearing assemblages. The specific respective reactions are</p><p> K(Al <sub> 2 </sub> )(AlSi <sub> 3 </sub> )O <sub> 10 </sub> (OH) <sub> 2 </sub> + TiO <sub> 2 </sub> = K(AlTi)(Al <sub> 2 </sub> Si <sub> 2 </sub> )O10(OH) <sub> 2 </sub> + SiO <sub> 2 </sub> (R1)</p><p> K(&square;MgAl)Si <sub> 4 </sub> O <sub> 10 </sub> (OH) <sub> 2 </sub> + TiO <sub> 2 </sub> = K(&square;MgTi)AlSi <sub> 3 </sub> O <sub> 10 </sub> (OH) <sub> 2 </sub> + SiO <sub> 2 </sub> (R2)</p><p> Ca <sub> 2 </sub> Mg <sub> 3 </sub> Al <sub> 2 </sub> Al <sub> 2 </sub> Si <sub> 6 </sub> O <sub> 22 </sub> (OH) <sub> 2 </sub> + 2TiO <sub> 2 </sub> = Ca <sub> 2 </sub> Mg <sub> 3 </sub> Ti <sub> 2 </sub> Al <sub> 4 </sub> Si <sub> 4 </sub> O <sub> 22 </sub> (OH) <sub> 2 </sub> + 2SiO <sub> 2 </sub> . (R3)</p><p> Ideal mixing on octahedral or octahedral plus tetrahedral sites and a non-ideal van Laar solution model yield the best regression results for thermodynamic fit parameters, with R <sup> 2 </sup> values of 0.98&ndash;1.00. Isopleths of the equilibrium constant ( <em> K </em> <sub> eq </sub> ) show minimal pressure dependencies of &lt;1 &gt;&deg;C/kbar, implying that the equilibria are poor barometers. Model reproducibility of the ideal portion of the equilibrium constant ( <em> K </em> <sub> id </sub> ) is excellent (ca. &plusmn;0.1 to 0.3, 2&sigma;), but the absolute value of the combined term &Delta; <em> S </em> + <em> K </em> <sub> id </sub> is quite small (absolute values from 0 to 4), so calibration residuals propagate to temperature errors &gt;&plusmn;50&ndash;100 &deg;C, 1&sigma;. Whereas the consistency of a mica or hornblende composition with a known <em> T </em> can be evaluated precisely, Ti chemistry in these reactions is sensitive to composition and does not resolve <em> T </em> (or <em> P </em> ) well. The activity of TiO <sub> 2 </sub> in rutile [ <em> a </em> (rt)] was also evaluated using both the garnet-rutile-ilmenite-plagioclase-quartz (GRIPS) equilibrium and our new calibrations in rutile-absent, ilmenite-bearing rocks whose peak <em> P-T </em> conditions are otherwise known. Metapelites have average <em> a </em> (rt) of 0.9 (GRIPS) and 0.8 (R1), whereas amphibolites have <em> a </em> (rt) of 0.95 (GRIPS and R3). A value for <em> a </em> (rt) of 0.80 &plusmn; 0.20 (metapelites) and 0.95 +0.05/&minus;0.25 (amphibolites) is recommended for trace-element thermomobarometers in ilmenite-bearing, rutile-absent rocks. The dependence of Ti contents of minerals on <em> a </em> (rt) and the reequilibration of Ti during metamorphic reactions both deserve further exploration, and may affect application of trace-element thermobarometers.</p>
Original languageAmerican English
JournalAmerican Mineralogist
StatePublished - 1 Apr 2012

Keywords

  • biotite
  • hornblende
  • muscovite
  • rutile
  • titanium

EGS Disciplines

  • Earth Sciences
  • Geophysics and Seismology

Fingerprint

Dive into the research topics of 'Titanium in Muscovite, Biotite, and Hornblende: Modeling, Thermometry, and Rutile Activities of Metapelites and Amphibolites'. Together they form a unique fingerprint.

Cite this