TY - JOUR
T1 - Using Graphs to Quantify Energetic and Structural Order in Semicrystalline Oligothiophene Thin Films
AU - Ellen, Van
AU - Jones, Matthew
AU - Jankowski, Eric
AU - Wodo, Olga
N1 - Publisher Copyright:
© 2018 The Royal Society of Chemistry.
PY - 2018/10
Y1 - 2018/10
N2 - In semicrystalline conjugated polymer thin films, the mobility of charges depends on the arrangement of the individual polymer chains. In particular, the ordering of the polymer backbones affects the charge transport within the film, as electron transfer generally occurs along the backbones with alternating single and double bonds. In this paper, we demonstrate that polymer ordering should be discussed not only in terms of structural but also energetic ordering of polymer chains. We couple data from molecular dynamics simulations and quantum chemical calculations to quantify both structural and energetic ordering of polymer chains. We leverage a graph-based representation of the polymer chains to quantify the transport pathways in a computationally efficient way. Next, we formulate the morphological descriptors that correlate well with hole mobility determined using kinetic Monte Carlo simulations. We show that the shortest and fastest path calculations are predictive of mobility in equilibrated morphologies. In this sense, we leverage graph-based descriptors to provide a basis for the quantitative structure property relationships.
AB - In semicrystalline conjugated polymer thin films, the mobility of charges depends on the arrangement of the individual polymer chains. In particular, the ordering of the polymer backbones affects the charge transport within the film, as electron transfer generally occurs along the backbones with alternating single and double bonds. In this paper, we demonstrate that polymer ordering should be discussed not only in terms of structural but also energetic ordering of polymer chains. We couple data from molecular dynamics simulations and quantum chemical calculations to quantify both structural and energetic ordering of polymer chains. We leverage a graph-based representation of the polymer chains to quantify the transport pathways in a computationally efficient way. Next, we formulate the morphological descriptors that correlate well with hole mobility determined using kinetic Monte Carlo simulations. We show that the shortest and fastest path calculations are predictive of mobility in equilibrated morphologies. In this sense, we leverage graph-based descriptors to provide a basis for the quantitative structure property relationships.
UR - https://www.scopus.com/pages/publications/85054567569
UR - https://scholarworks.boisestate.edu/mse_facpubs/367
U2 - 10.1039/c8me00028j
DO - 10.1039/c8me00028j
M3 - Article
VL - 3
SP - 853
EP - 867
JO - Molecular Systems Design and Engineering
JF - Molecular Systems Design and Engineering
IS - 5
ER -