TY - GEN
T1 - Wireless Galvanic Impulse Communication for High-Throughput, Low-Power, Miniaturized Neuromodulation Implants
AU - Riley, Morgan
AU - Tala, F. N.U.
AU - Bandali, Mehdi
AU - Johnson, Benjamin C.
N1 - Publisher Copyright:
© 2023 IEEE.
PY - 2023
Y1 - 2023
N2 - Deeply implanted bioelectronic devices that selectively record and stimulate peripheral nerves have the potential to revolutionize healthcare by delivering on-demand, personalized therapy. A key barrier to this goal is the lack of a miniaturized, robust, and energy-efficient wireless link capable of transmitting data from multiple sensing channels. To address this issue, we present a wireless galvanic impulse link that uses two 500μm diameter planar electrodes on the outside of a nerve cuff to transmit data to a wearable receiver on the skin's surface at rates greater than 1Mbps. To achieve an energy-efficient, high data rate link, our protocol encodes information in the timing of narrow biphasic pulses that is reconstructed by the wearable receiver. We use a combination of modeling and in vivo and in vitro experimentation to demonstrate the viability of the link. We demonstrate losses lower than 60dB even with significant, 50mm lateral misalignment, ensuring a sufficient signal-to-noise ratio for robust operation. Using a custom, flexible nerve cuff, we demonstrate data transmission in a 14mm-thick rodent animal model and in a 42mm-thick heterogeneous human tissue phantom.
AB - Deeply implanted bioelectronic devices that selectively record and stimulate peripheral nerves have the potential to revolutionize healthcare by delivering on-demand, personalized therapy. A key barrier to this goal is the lack of a miniaturized, robust, and energy-efficient wireless link capable of transmitting data from multiple sensing channels. To address this issue, we present a wireless galvanic impulse link that uses two 500μm diameter planar electrodes on the outside of a nerve cuff to transmit data to a wearable receiver on the skin's surface at rates greater than 1Mbps. To achieve an energy-efficient, high data rate link, our protocol encodes information in the timing of narrow biphasic pulses that is reconstructed by the wearable receiver. We use a combination of modeling and in vivo and in vitro experimentation to demonstrate the viability of the link. We demonstrate losses lower than 60dB even with significant, 50mm lateral misalignment, ensuring a sufficient signal-to-noise ratio for robust operation. Using a custom, flexible nerve cuff, we demonstrate data transmission in a 14mm-thick rodent animal model and in a 42mm-thick heterogeneous human tissue phantom.
KW - biomedical device
KW - Galvanic impulse
KW - intrabody communication
KW - low-powered
KW - wireless device
UR - http://www.scopus.com/inward/record.url?scp=85179648579&partnerID=8YFLogxK
U2 - 10.1109/EMBC40787.2023.10340538
DO - 10.1109/EMBC40787.2023.10340538
M3 - Conference contribution
C2 - 38083239
AN - SCOPUS:85179648579
T3 - Proceedings of the Annual International Conference of the IEEE Engineering in Medicine and Biology Society, EMBS
BT - 2023 45th Annual International Conference of the IEEE Engineering in Medicine and Biology Conference, EMBC 2023 - Proceedings
PB - Institute of Electrical and Electronics Engineers Inc.
T2 - 45th Annual International Conference of the IEEE Engineering in Medicine and Biology Conference, EMBC 2023
Y2 - 24 July 2023 through 27 July 2023
ER -